Jumat, 02 November 2012

Penjumlahan Vektor Menggunakan Metode Grafis dan Analitis

Penjumlahan Vektor Menggunakan Metode Grafis dan Analitis- Pernahkah Anda membayangkan jika Anda berenang di sungai searah dengan aliran sungai, kemudian Anda tiba-tiba berbalik arah 90° dari arah pergerakan semula? Apakah posisi terakhir Anda tepat sesuai keinginan Anda? Tentu tidak, arah akhir posisi Anda tidak akan membentuk sudut 90° dari posisi semula karena terdapat hambatan arus sungai yang membuat arah gerak Anda tidak tepat atau menyimpang. Anda dapat menentukan posisi akhir Anda dengan cara menjumlahkan vektor gerak Anda, baik perpindahannya maupun kecepatannya. Apakah Anda mengetahui cara menjumlahkan dua buah vektor?
Penjumlahan vektor tidak sama dengan penjumlahan skalar. Hal ini karena vektor selain memiliki nilai, juga memiliki arah. Vektor yang diperoleh dari hasil penjumlahan beberapa vektor disebut vektor resultan. Berikut ini akan dibahas metode-metode untuk menentukan vektor resultan.
1. Resultan Dua Vektor Sejajar
Misalnya, Anda bepergian mengelilingi kota Palu dengan mengendarai sepeda motor. Dua jam pertama, Anda bergerak lurus ke timur dan menempuh jarak sejauh 50 km. Setelah istirahat secukupnya, Anda kembali melanjutkan perjalanan lurus ke timur sejauh 30 km lagi. Di lihat dari posisi asal, Anda telah berpindah sejauh sejauh 50 km + 30 km = 80 km ke timur. Dikatakan, resultan perpindahan Anda adalah 80 km ke timur. Secara grafis, perpindahan Anda seperti diperlihatkan pada Gambar 2.3.
 img1
Gambar 2.3 Menjumlahkan dua vektor searah.
Sedikit berbeda dengan kasus tersebut, misalnya setelah menempuh jarak lurus 50 km ke timur, Anda kembali lagi ke barat sejauh 30 km. Relatif terhadap titik asal, perpindahan Anda menjadi 50 km – 30 km = 20 km ke timur. menjumlahkan dua buah vektor sejajar mirip dengan menjumlahkan aljabar biasa. Secara matematis, resultan dua buah vektor sejajar, yakni, sebagai berikut. Jika vektor A dan B searah, besar vektor resultan R, adalah
R = A+B
dengan arah vektor R sama dengan arah vektor A dan B. Sebaliknya, jika kedua vektor tersebut berlawanan, besar resultannya adalah
R = A- B
dengan arah vektor R sama dengan arah vektor yang terbesar.
2. Resultan Dua Vektor yang Saling Tegak Lurus
Misalnya, Anda memacu kendaraan Anda lurus ke timur sejauh 40 km dan kemudian berbelok tegak lurus menuju utara sejauh 30 km. Secara grafis, perpindahan Anda seperti diperlihatkan pada Gambar 2.5. Besar resultan perpindahannya, r, diperoleh menggunakan Dalil Pythagoras, yakni sebagai berikut
img2
Gambar 2.5 Menjumlahkan dua vektor yang saling tegak lurus.
r = √x2 + y2 = √402 + 302 = 50km
dan arahnya
tanѲ = y/x = 30/40 = 37o
terhadap sumbu-x positif (atau 37° dari arah timur).
Dari contoh kasus tersebut, jika dua buah vektor, A dan B, yang saling tegak lurus akan menghasilkan vektor resultan, R, yang besarnya
R = √A2 + B2
dengan arah
θ = tan1 (B/A)
terhadap arah vektor A dengan catatan vektor B searah sumbu-y dan vektor A searah sumbu-x.
3. Resultan Dua Vektor yang Mengapit Sudut
Sekarang tinjau dua buah vektor, A dan B, yang satu sama lain mengapit sudut seperti yang diperlihatkan pada Gambar 2.6 (a). Gambar vektor resultannya dapat diperoleh dengan cara menempatkan pangkal vektor B di ujung vektor A. Selanjutnya, tarik garis dari titik pangkal vektor A ke titik ujung vektor B dan buatkan panah tepat di ujung yang berimpit dengan ujung vektor B. Vektor inilah, R, resultan dari vektor A dan B. Hasilnya seperti diperlihatkan pada Gambar 2.6 (b).
img3
Gambar 2.6 (a) Vektor A dan vektor B mengapit sudut. (b) Menggambarkan vektor resultan dari vektor A dan vektor B.
Besar vektor resultan, R, dapat ditentukan secara analitis sebagai berikut.
R = √A2 + B2 + 2AbcosѲ
4. Selisih Dua Vektor yang Mengapit Sudut
Vektor A dan vektor -A, memiliki besar yang sama, yakni |A| = |A| = A, tetapi arahnya berlawanan. Selisih dari dua buah vektor, misalnya vektor A B, secara grafis sama dengan jumlah antara vektor A dan vektor B. Secara matematis, vektor selisihnya ditulis R = A B. Secara analitis, besar vektor selisihnya diperoleh:
R = √A2 + B2 – 2AbcosѲ
5. Melukis Resultan Beberapa Vektor dengan Metode Poligon
Jika terdapat tiga buah vektor, A, B, dan C, yang besar dan arahnya berbeda seperti diperlihatkan pada Gambar 2.10 (a), resultannya dapat diperoleh dengan cara menggunakan metode poligon, yakni sebagai berikut.
a. Hubungkan titik tangkap vektor B pada ujung vektor A dan titik pangkal vektor C pada ujung vektor B.
b. Buat vektor resultan, R, dengan titik tangkap sama dengan titik pangkal vektor A dan ujung panahnya tepat di titik ujung vektor C. Hasilnya seperti diperlihatkan pada Gambar 2.10 (b).
img4
Secara matematis, vektor resultan pada Gambar 2.10 ditulis sebagai berikut.
R = A + B + C
Menjumlahkan Vektor dengan Metode Uraian
Dalam beberapa kasus, seringkali Anda menjumlahkan beberapa vektor yang lebih dari dua buah. Secara grafis, metode yang digunakan adalah metode poligon, seperti yang telah disinggung sebelumnya. Akan tetapi, bagaimanakah cara menentukan besar dan arah vektor resultannya? Salah satu metode yang digunakan adalah metode uraian, seperti yang akan di bahas pada sub-subbab berikut ini.
1. Menguraikan Vektor Menjadi Vektor Komponennya
Sebuah vektor dapat diuraikan menjadi dua buah vektor yang saling tegak lurus. Vektor-vektor baru hasil uraian disebut vektor-vektor komponen. Ketika sebuah vektor telah diuraikan menjadi vektor-vektor komponennya, vektor tersebut dianggap tidak ada karena telah diwakili oleh vektor-vektor komponennya. Sebagai contoh, ketika Anda menguraikan sekarung beras 50 kg menjadi dua karung dengan masing-masing 20 kg dan 30 kg, apakah karung yang berisi 50 kg tetap ada?
img5
Gambar 2.12 Menguraikan sebuah vektor menjadi dua vektor komponen yang saling tegak lurus.
Gambar 2.12 memperlihatkan sebuah vektor A yang diuraikan menjadi dua buah vektor komponen, masing-masing berada pada sumbu-x dan sumbu-y. Ax adalah komponen vektor A pada sumbu-x dan Ay adalah komponen vektor A pada sumbu-y. Dengan mengingat definisi sin θ dan cos θ dari trigonometri, besar setiap komponen vektor A dapat ditulis sebagai berikut.
Ax = A cos θ dan Ay = A sinθ
Sementara itu, dengan menggunakan Dalil Pythagoras diperoleh hubungan
A = √Ax2+Ay2
Selanjutnya, hubungan antara Ax dan Ay diberikan oleh
tan θ = Ay/Ax
2. Menjumlahkan Vektor Melalui Vektor-Vektor Komponennya
Menjumlahkan sejumlah vektor dapat dilakukan dengan menguraikan setiap vektor menjadi komponen-komponennya ke sumbu-x dan sumbu-y pada koordinat kartesius. Metode seperti ini disebut metode uraian. Berikut adalah tahapan-tahapan untuk mencari besar dan arah vektor resultan dengan metode uraian.
a. Buat koordinat kartesius x-y.
b. Letakkan titik tangkap semua vektor pada titik asal (0,0). Hati-hati, arah vektor tidak boleh berubah.
c. Uraikan setiap vektor, yang tidak berimpit dengan sumbu-x atau sumbu-y, menjadi komponen-komponennya pada sumbu-x dan sumbu-y.
d. Tentukanlah resultan vektor-vektor komponen pada setiap sumbu, misalnya
x ΣR = resultan vektor-vektor komponen pada sumbu-x.
y ΣR = resultan vektor-vektor komponen pada sumbu-y.
e. Besar vektor resultannya
R = √(ΣRx)2 + (ΣRy2)
dan arahnya terhadap sumbu-x positif
tan θ = ΣRx/ΣRy

Tidak ada komentar:

Poskan Komentar